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ABSTRACT: 
In the Kalman filter used for the integration of GPS/INS, the inertial sensor error model is usually considered as a random constant or 
random walk for both gyroscopes and accelerometers. However, the Inertial Measurement Unit (IMU) used in aerial remote sensing 
applications for sensor positioning and orientation is typically of tactical grade, i.e., the gyroscope drifts are on the order of 0.1 deg/h 
and the accelerometer biases are 100ug respectively. In this case, there is the room to improve the system performance by developing 
more complicated error models for the inertial sensors. In this paper, 6-state, 12-state and 15-state error models for the inertial 
sensors are implemented, and their performance of each in the Kalman filter is compared and analyzed. Firstly, the commonly used 
6-state error model that includes three random walks for gyroscopes and three random walks for accelerometers is implemented. 
Then, a 12-state error model is formed by augmenting the 6-state model with three scale factors for the gyroscopes and three scale 
factors for the accelerometers. Thirdly, three first-order Markov procedures are considered for the gyroscopes in addition to the 
random walks and scale factors, thus resulting in a 15-state error model. Aerial GPS/INS data collected in the field with a tactical 
grade IMU and dual frequency GPS receivers is processed with these three error models. In the data processing, the loosely-coupled 
Kalman filter, which is the common coupling method for the aerial GPS/INS integration, is used. The 12-state and 15-state error 
models show obvious advantages over the 6-state error model in the test results. The accuracies of the integrated position (5cm), 
velocity (3cm/s) and attitude (0.002 degree for pitch and roll, 0.008 degree for heading) in the 12-state model are all better than that 
of the 6-state error model. However, the improvement of the 15-state error model relative to the 12-state error model is limited and 
insignificant.  
 
 

1. INTRODUCTION 

Direct georeferencing, also referred to as direct platform 
orientation (DPO), is defined as direct measurement of the 
imaging sensor external orientation parameters (EOP), using 
positioning and orientation sensors, typically the Global 
Positioning System (GPS) and Inertial Navigation System (INS) 
or Inertial Measurement Unit (IMU). With the increasing use of 
multi-sensor mapping, the DPO of the integrated GPS/IMU 
systems has become a crucial component of spatial data 
processing algorithms, and substantial research effort has been 
devoted to extensive algorithmic developments, performance 
analysis and practical implementations of GPS/IMU systems 
(Skaloud et al., 1996; Abdullah, 1997; Grejner-Brzezinska, 
1997; Toth and Grejner-Brzezinska, 1998; Grejner-Brzezinska, 
1999; Grejner-Brzezinska, 2001; Mostafa et al., 2001; Cramer 
et al., 2000; Cramer, 2001). However, investigation of the 
GPS/INS integration itself, especially for the inertial sensor 
error model, is not focused on as much. Grejner-Brzezinska et 
al., (2005) attempted to improve the performance of GPS/IMU 
integration by using a precise gravity model, signal de-noising 
and parameter refinement of the inertial sensor stochastic model, 
nevertheless the sensor stochastic model was still of 12 states.   
 
The commonly used IMU sensor stochastic model in the 
Kalman Filter (KF) supports 6 states (i.e., gyroscope drift and 
accelerometer bias) to 12 states (for which the scale factors of 
both of gyroscope and accelerometer are also included) (Cramer, 
2001; Grejner-Brzezinska et al., 2005). In aerial 
photogrammetric mapping or remote sensing, the IMU 
hardware is typically classified as high-end tactical grade sensor, 
i.e., the gyroscope drifts are on the order of 0.1 deg/h and the 
accelerometer biases are 100ug respectively. In this case, there 

is the room to improve the system performance by developing 
more complicated error models for the inertial sensors. In this 
paper, the 6-state, 12-state and 15-state inertial sensor error 
models are implemented, and the KF performance of each is 
compared and analyzed.  
 
 
2. STOCHASTIC ERROR MODEL OF THE INERTIAL 

SENEORS 

The performance characteristic of a gyroscope (or 
accelerometer) is determined by the dynamic model, which 
involves a scale factor, bias and random, random environmental 
sensitivity and misalignment (IEEE std. 952-1997). The 
situation is similar for accelerometers (IEEE std. 1293-1998). 
The environmental sensitivity and misalignment are generally 
ignored in the stochastic error model, so the focus in this paper 
is mainly on the first two items. The scale factor of the sensor is 
calibrated by the manufacturers in the factory before the sale. 
But post-factory calibration of the instrument can still influence 
the navigation performance significantly, therefore it can also 
be considered in the stochastic error model. The random 
component of the gyroscope and accelerometer data mainly 
include: (a) the gyro rate ramp (trend) defined as a gyro 
behavior characterized by quadratic growth within a certain 
range of time, (b) gyro rate (acceleration) random walk due to 
white noise in the angular acceleration (jerk) which is defined as 
the drift rate error (acceleration) build-up with time, (c) flicker 
noise (bias instability), defined as a random variation in bias, 
computed over a specific finite sample time and averaging time 
interval; (d) angle (velocity) random walk due to the white noise 
of gyroscope angular rate (acceleration) data, (e) quantization 
noise, defined as a random variation in the digitized output 
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signal due to sampling and quantizing of a continuous signal 
with a finite word length conversion, (f) exponentially 
correlated (Markov) noise characterized by an exponential 
decaying function with a finite correlation time, and (g) 
sinusoidal noise characterized by one or more distinct 
frequencies (IEEE Std. 952–1997 and IEEE Std. 528–2001). 
Generally, any combination of these processes can be present in 
the data, and different noise terms may appear in different 
regions of the time scale. In practical applications, the random 
items above can be chosen selectively to establish the stochastic 
error model. From the simplest scenario that only considered 
bias instability (e. g. see Schwarz, et al., 1994) to moderately 
complicated models that were augmented with scale factors and 
axis misalignments (Grejner-Brzezinska, 2001; Cramer, 2001) 
were used for the aerial photogrammetric applications. In this 
paper, the random item for the bias in the gyroscope can be 
considered as: 
 
 

dmRb wdddd +++=   (1) 
 
 
Where d denotes random bias, db denotes bias instability, dR 
denotes gyro rate random walk, dm denotes first-order Markov 
process noise, wd denotes white noise that drives into the angle 
random walk. A more detailed representation of Equation (1) 
can be found in (Yi, 2007). The rates of db, dR and dm are 
expressed in Equation (2), (3) and (4) as: 
 
 

0=bd     (2) 

dRR wd =    (3) 

dmmm wdd +−=
α
1

  (4) 

 
 
Where wdR denotes white noise, α denotes the correlation time 
of the process, wdm denotes white noise.  
The random item for the bias in the accelerometer can be 
written as: 
 
 

bmRb wbbbb +++=   (5) 
 
 
Where the meanings of the suffixes are the same as those in 
Equation (1), and the rates of bb, bR and bm are expressed in 
Equation (6), (7) and (8) as: 
 
 

0=bb     (6) 

bRR wb =    (7) 

bmmm wbb +−=
β
1

  (8) 

 
 
Where wbR denotes white noise, β denotes the correlation time 
of the process, wbm denotes white noise.  
By ignoring dR, dm, bR and bm and consideration of only random 
constants (db and bb), the 6-state error model can be 

implemented in the KF. Inclusion of the navigation parameters 
and other constant parameters (for example, the lever arm of the 
GPS antenna relative to the INS navigation center) results in the 
lineralized error dynamic equation of the KF given as a state-
vector-based linear differential Equation (9): 
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Where xrvε denotes a 9-dimensional navigation error state sub-
vector (3 for position, 3 for velocity and 3 for orientation), xf 
denotes the accelerometer error state sub-vector (bb), xω denotes 
gyroscope error state sub-vector, xL denotes the lever arm, wrvε, 
wf, wω and wL are noises.  F11 is standard INS navigation error 
matrix, and 
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3333 0 ×=F , F44 is generally zero if the GPS is fixedly 
mounted with respect to the IMU body; however, it can be 
considered as a first order Markov process if the gimbal is used 
for the attitude compensation of platform tilt in the aerial 
photogrammetric applications. It should be mentioned that if the 
noises wf, wω are set as non-zero values, the xf and xω will be 
modeled as random walk dR and bR. In this case, the whole 
structure of the KF will remain unchanged from the random 
constant model, and just with different stochastic parameter 
configurations. 
 
As mentioned above, the remaining error of the scale factor can 
still be considered in the stochastic error model to improve the 
navigation performance even if it has been calibrated by the 
manufacturer in the factory. The scale factor error is typically 
considered as a random constant (Yi, 2007) or random walk 
(Feng, 1999). The random constant model is given here, and the 
state equation of the system with 12 error states of the inertial 
sensor of Equation (9) is modified to give Equation (10). 
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where 
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If more items in Equations (1) and (5) are considered in the 
error model, the KF will perform more elegantly. If the noise in 
Equations (3) and (7) is zero, dR and bR will be same to db and bb 
respectively. In this paper, only the dR and dm for the gyroscope 
(and bR for accelerometer) are modeled for the stochastic error. 
So the error dynamic equation of the KF with 15 inertial sensor 
error states is given as Equation (11). 
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the 3-order identity matrix, and other parameters are same to 
those in Equation (10). 
 
 

3. EXPERIMENT AND ANALYSIS 

In the experiment, aerial GPS/INS data was collected in 
September 2005 with a tactical grade IMU and dual frequency 
GPS receivers by the POS AV 510 system from Applanix. The 
gyroscope drifts in the IMU are of the order of 0.1 deg/h and the 
accelerometer biases are 100ug. The data rate of the IMU is 
250Hz and 10Hz for the GPS. The GPS/INS integration 
software package ThrostleTM, which supports loosely-coupled 
and tightly-coupled models and different stochastic error 
models, was used to process the data with the three error models 
proposed in the paper. In the data processing, the loosely 
coupled model for the Extended Kalman Filter (EKF) is used, 
which is a common coupling method for the aerial GPS/INS 
integration because the GPS observation condition in aerial 
applications is much better than that in the land-based 
applications. Firstly the differential GPS positioning was 
processed with GPS high precision positioning software Caravel 
PPTM at a 1Hz data rate because this data rate is high enough for 
the GPS/INS coupling. The positioning result was compared to 
another GPS positioning software Graf/NavTM, and the 

difference is less than 10 cm for the 200km baseline. The 
trajectory of the test flight is shown in Figure 1. Then the 
positioning result of Caravel PP was put into Throstle for the 
loose coupling with three stochastic models. The configurations 
of three tests are listed in Table 1. The data was processed also 
by POSPacTM to compare the result of Throstle.   
 
 

 
 

Figure 1. The trajectory of the test flight. 
 
 

Items model 1 model 2 model 3
Gyro drift random walk √ √ √ 
Acce. bias random walk √ √ √ 
Gyro scale factor  √ √ 
Acce. scale factor  √ √ 
Gyro drift first-order 
Markov process 

  √ 

 
Table 1. The configurations of the three stochastic models. 

 
The first test is processed with model 1 which uses 6 error states, 
i.e. 3 random walks for the gyroscope drifts and 3 random walks 
for the accelerometer biases. In order to check the performance 
of the KF with different stochastic models, the backward 
filtering and the smoothing were not implemented. The 
innovation (predicted residual) and measurement residual are 
shown in the Figures 2 and 3. The estimated errors of position 
(the output of the EKF) are shown in Figure 4. The estimated 
sensor errors are shown in Figures 5 and 6. The standard 
deviations of position and attitude are shown in Figures 7 and 8. 
The difference of the positions between the GPS differential 
positioning result (Caravel PP) and GPS/INS coupling result 
(Throstle) is shown in Figure 9. The difference of the attitude 
between the Throstle solution and the POSPac solution is shown 
in Figure 10. 
 

 
 

Figure 2. The innovation of the Filter with model 1. 
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Figure 3. The measurement residual of the Filter in model 1. 
 

 
 

Figure 4. The estimated position error in the model 1. 
 

 
 

Figure 5. The estimated drift of the gyroscope in the model 1. 
 

 
 

Figure 6. The estimated bias of the acce. in the model 1. 
 

 
 

Figure 7. The Std. Dev. of position in the Filter of model 1. 

 
 

Figure 8. The Std. Dev. of attitude in the Filter of model 1. 
 

 
 
Figure 9. The position difference between the results of Throstle 

in the model 1 and of Caravel PP. 
 

 
 

Figure 10. The attitude difference between the results of 
Throstle in the model 1 and of POSPac. 

 
In Figures 2 - 10, it can be found that the predicted residual and 
measurement residual of the KF with model 1 are about the 0.5 
- 1.0 meter. The spikes in the figures correspond to the aircraft 
banking where there were vehicle maneuvers. The estimated 
error of the position in the KF is about 10 - 20 centimeters. The 
estimated drifts of the gyroscopes for three axes are about 4, 5 
and –6 deg/h respectively. The estimated biases of the 
accelerometers are 0.3, -0.3 and 0 mg for the three axes 
respectively, and the biases of the axes corresponding to the east 
and north directions vibrate intensely with the different flight 
strips. That means the model 1 is not good enough to describe 
the stochastic error in the system. The std. deviations are about 
6cm for position, 4cm/s for velocity (not shown in figure), 
0.002 degrees for pitch and roll, 0.01 degrees for heading. The 
position difference between the results of Throstle in the model 
1 and of GPS is about 0.5 meter, which is consistent with the 
innovation of the filter. Because the GPS positioning accuracy 
is about 10 cm, the absolute position accuracy of the integrated 
system can be considered to be accurate at the 0.5-meter level. 
The attitude difference between the results of Throstle and of 
POSPac is about 0.1 degree. This result shows the 3-
dimentional attitude accuracy in model 1 is at the 0.1-degree 
level as the attitude resolution in POS AV 510 system is 
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considered as 0.008 degree for heading and 0.005 degrees for 
the RMS of the pitch and roll. Obviously, this performance with 
model 1 can not reach the accuracy required for aerial 
photogrammetry. 
 
The second test is processed in the model 2 with 12 error states, 
i.e. 3 random constants for the gyroscope drifts, 3 random 
constants for the accelerometer biases, 3 random constants for 
the gyroscope scale factors and 3 random constants for the 
accelerometer scale factors. The innovation and measurement 
residuals are shown in the Figures 11 and 12. The estimated 
errors of position, attitude and gyroscope drift and 
accelerometer bias are shown in Figures 13 - 15. The difference 
of the position between Caravel PP and Throstle is shown in 
Figure 16. The difference of the attitude between the Throstle 
solution and the POSPac solution is shown in Figure 17. The std. 
deviations are about 5m for position, 3cm/s for velocity, 0.002 
degree for pitch and roll, 0.008 degree for heading.  
 
 

 
 

Figure 11. The innovation of the Filter with model 2. 
 
 

 
 
Figure 12. The measurement residual of the Filter with model 2. 
 
 

 
 

Figure 13. The estimated position error in model 2. 

 
 

Figure 14. The estimated gyro drift in model 2. 
 
 

 
 

Figure 15. The estimated accelerometer bias in model 2. 
 
 

 
 

Figure 16. The position difference between the results of 
Throstle in model 2 and of GPS. 

 
 

 
 

Figure 17. The attitude difference between the results of 
Throstlein model 2 and of GPS. 

 
As shown in Figures 11 and 12, the predicted residual and 
measurement residual of the KF in model 2 are about the 0.1 - 
0.2 meter, which is much better than those in model 1. The 
estimated error of the position in the KF is about 0.02 - 0.05 
centimeters. The estimated drifts of the gyroscopes are similar 
to those in model 1 in general, however, they are much more 
stable in the short time period. The improvement is more 
evident for the biases of the accelerometers, where there is no 
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obvious correlation between the biases and the motion trajectory. 
The position difference between Throstle and GPS is about 0.2 
meter after the stability of the filter, which indicates the 
absolute position accuracy in model 2 is about 0.2 meter. The 
differences of attitude angles are less than 0.01 degrees for both 
of pitch and roll, 0.05 degrees for heading. And these values can 
be cut down, especially for the heading, to half, i.e. 0.02~0.03 
degree by smoothing or backward filtering. In this case, the 
Throstle can be considered as accurate as POSPac. Therefore, 
POSPac can not be used as a reference standard to evaluate the 
absolute attitude accuracy any more. Other data, e.g. the attitude 
from bundle adjustment or the coordinates of the ground points 
by traditional surveying can be used to check the final direct 
referencing accuracy. But these methods need the calibration of 
the camera boresight, which is not finished for this test data. So 
in this paper, these two methods are not implemented to 
evaluate the attitude accuracy. While the absolute accuracy 
specification is not achieved, from the analysis above, the result 
of model 2 shows obvious improvement to that of model 1. 
 
In the 15-state error model a Markov process in the gyroscope 
drift is added to model 2. The std. deviations for position, 
velocity and attitude are almost the same as those in Model 2. In 
this section, the attention is paid to the gyro drift and 
accelerometer bias as shown in Figures 18 and 19, and the 
difference of position (and attitude) between Throstle and GPS 
(POSPac) is shown in Figure 20 and 21. By comparing the 
Figures 18 - 21 and Figures 14 - 17, it can be found the 
differences are not obvious, which means the improvement of 
the 15-state error model relative to the 12-state error model is 
limited. This is probably due to the limited observation 
capability of the gyroscope data or the unsuitable configuration 
of the stochastic model parameters. The testing and analysis are 
ongoing efforts for which more detailed analysis and results will 
be provided later. 
 
 

 
 

Figure 18. The estimated gyro drift in model 3. 
 
 

 
 

Figure 19. The estimated accelerometer bias in model 3. 
 

 
 

Figure 20. The position difference between the results of 
Throstle in model 3 and of GPS. 

 

 
 

Figure 21. The attitude difference between the results of 
Throstlein model 3 and of GPS. 

 
 

4. CONCLUSIONS 

In this paper, the 6-state, 12-state and 15-state inertial sensor 
error models are implemented, and the KF performance of each 
is compared and analyzed. The accuracies of the integrated 
system reach 5cm for position, 3cm/s for velocity, 0.002 degree 
for pitch and roll, 0.008 degree for heading in the 12-state 
model, which are all better than those in the 6-state error model. 
However, the improvement of the 15-state error model from 12-
state error model is limited and insignificant.  Further 
investigation is going for the absolute accuracy validation of the 
GPS/INS integration based on different models. And more 
precise stochastic error model will also be tested. 
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